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SUMMARY

This paper presents a second-order accurate Godunov-type numerical scheme for depth- and period-
averaged wave–current interaction. A �ux Jacobian is derived for the wave conservation equations and its
eigensystem determined, enabling Roe’s approximate Riemann solver to be used to evaluate convective
�uxes. Dynamically adaptive quadtree grids are used to focus on local hydrodynamic features, where
sharp gradients occur in the �ow variables. Adaptation criteria based on depth-averaged vorticity, wave-
height gradient, wave steepness and the magnitude of velocity gradients are found to produce accurate
solutions for nearshore circulation at a half-sinusoidal beach. However, the simultaneous combination
of two or more separate criteria produces numerical instability and interference unless all criteria are
satis�ed for mesh depletion. Simulations of wave–current interaction at a multi-cusped beach match
laboratory data from the United Kingdom Coastal Research Facility (UKCRF). A parameter study
demonstrates the sensitivity of nearshore �ow patterns to changes in relative cusp height, angle of wave
incidence, bed roughness, o�shore wave height and assumed turbulent eddy viscosity. Only a small
deviation from normal wave incidence is required to initiate a meandering longshore current. Nearshore
circulation patterns are highly dependent on the o�shore wave height. Reduction of the assumed eddy
viscosity parameter causes the primary circulation cells for normally incident waves to increase in
strength whilst producing rip-like currents cutting diagonally across the surf zone. Copyright ? 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical models are commonly used to predict coastal processes, including hydrodynamics,
sediment transport and the evolution of bed morphology. Localized relatively small-scale �ow
features such as shear layers can have profound e�ects on �uid mixing and material transport,
so �ne resolution modelling is essential. The simulation of localized �ow features on �xed

∗Correspondence to: A. G. L. Borthwick, Department of Engineering Science, University of Oxford, Parks Road,
Oxford, OX1 3PJ, U.K.

Contract=grant sponsor: U.K. Engineering and Physical Sciences Research Council; contract=grant number: EPSRC
Grant GR=L29877

Published online 6 September 2004 Received 5 May 2003
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 16 April 2004



570 B. D. ROGERS, A. G. L. BORTHWICK AND P. H. TAYLOR

regular grids of uniformly �ne resolution is computationally ine�cient. Dynamic grid re�ne-
ment overcomes this problem, and is well established in many areas of CFD. Techniques that
include adaptive unstructured grids [1], adaptive hierarchical grids [2] and block re�nement
are becoming increasingly popular [3].
The main techniques used to activate grid re�nement (which is interchangeably referred to

as adaptation herein) involve adapting the mesh according to either a physically based crite-
rion, or according to an approximate error estimate in the solution. When error assessments
(or convergence of variable residuals) drive mesh adaptation, a priori error estimates com-
monly use a least-squares approximation to the approximate solution (e.g. References [4–6]).
However, such approaches are in�uenced by the error in the approximate solution as opposed
to following physical �ow features (as recommended by George [7]).
Shallow �ow modellers make use of the two-dimensional shallow water equations (SWEs)

which describe the hydrodynamics in water bodies where the horizontal dimensions of mo-
tion are far greater than the depth. Incorporation of grid adaptation in a numerical solver of
the SWEs facilitates modelling the evolution of locally �ne-scaled �ow behaviour. Amongst
others, Ivanenko and Muratova [8] used optimization of a harmonic-functional to adjust the
shape of a curvilinear grid when using the SWEs to model �ow in the Azov Sea. Borthwick
et al. [9] obtained satisfactory results for the SWEs against standard benchmark test cases
when using adaptive quadtree grids with individual cell circulation as the adaptivity criterion.
Similarly, Rogers et al. [10] used criteria based on non-dimensionalized depth-averaged vor-
ticity and the magnitude of the free-surface gradient to resolve �ows in a circular reservoir,
two-dimensional dam-breaks and oblique hydraulic jumps. Sleigh et al. [5] used an approx-
imate error estimator to adapt triangular unstructured grids for two-dimensional dam-break
simulations. For coastal simulations, Borthwick and Park [11] used quadtree grids in a 2-D
combined wave and current scheme. The grids were adapted according to either the magni-
tude of a longshore current or the depth-averaged vorticity, in order to provide one extra level
of resolution for nearshore circulation patterns. Hubbard and Dodd [12] used adaptive mesh-
block re�nement with Cartesian grids to study overtopping of coastal defences by increasing
grid resolution as the water shallowed.
Although it is well established that grid adaptation is an e�cient approach to model shal-

low water �ow features of various scales and locations [3], little attention has been given to
evaluating the e�ectiveness of di�erent criteria, their combination, and how frequently adap-
tation should occur in shallow coastal �ow simulations. Hence, this paper examines di�erent
adaptation criteria based on local �ow variables using dynamically adaptive quadtree grids
within a numerical scheme for shallow water and coastal hydrodynamics. Quadtree grids are
easy to adapt due to their hierarchical ordered data-tree structure, re�nement merely involving
addition or subtraction of leaf cells with little computational overhead.
Numerical modelling of highly sheared localized coastal �ows, such as occur near the

edges of regions with strong currents, demands appropriate discretization schemes. Shallow
water �ows that exhibit large gradients in the �ow variables or local discontinuities (referred
to as Riemann problems) can now be modelled with great accuracy using high-resolution
Godunov-type methods e.g. References [13, 14]. Hubbard and Dodd [12] have recently applied
a Godunov-type solver to the SWEs for coastal hydrodynamics.
This paper describes the application of high-resolution Godunov-type methods and dynam-

ically adaptive quadtree grids to combined wave–current �ows. The governing equations for
2-DH depth- and period-averaged combined wave and current �ow are given in Section 2.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:569–606



GODUNOV-TYPE ADAPTIVE GRID MODEL 571

These are discretized using �nite volumes to develop a second-order accurate Godunov-type
numerical scheme. A �ux Jacobian and its associated eigensystem are derived for the wave
energy and kinematic wave number conservation laws. Section 3 describes the quadtree grid
generation methodology. Section 4 presents a detailed study of di�erent adaptation criteria for
wave-induced currents at a half-sinusoidal beach. Simulations of normally and obliquely inci-
dent waves propagating towards a tri-cuspate beach are discussed in Section 5. The numerical
model is used to investigate the sensitivity of nearshore wave-induced currents to changes in
incident wave height and angle, bed roughness, relative cusp height and assumed turbulent
eddy viscosity.

2. NUMERICAL SOLUTION

2.1. Theoretical background of the wave–current model

A period-averaged formulation for a ray-type wave–current interaction model is used here to
model relatively large coastal areas. The wave motion is assumed to be gravity-driven and
irrotational, vertical motions are negligible so that pressure is hydrostatic, and small amplitude
waves propagate over a mild-slope with negligible non-linear wave–wave interaction.

2.2. Governing equations of wave–current interaction

By considering the number of free-surface wave crests per unit length crossing a position
(x; y) per unit time and the absolute frequency, �, of waves relative to a �xed bed, the
conservation of waves is expressed by [15]

@K
@t

+∇�= 0 (1)

where the wave number vector, K, can be considered to be the density of the waves and �,
the �ux of waves. The wave number or wave direction vector, K, is expressed in terms of
its co-ordinate components Kx=K cos �, and Ky=K sin � such that

K = |K|=
√
K 2
x + K 2

y (2)

For a mass of water moving at velocity U, the absolute frequency of the waves, �, is related
to the frequency of the waves relative to the moving mass of water, �0, by the Doppler
relation

�=�0 +K ·U (3)

Furthermore, a modi�ed linear dispersion relation holds for waves propagating up a sloping
beach [16], which for mild slopes reduces to the familiar linear dispersion relation

� 20 = kg tanh kh (4)

where k is the separation factor, h is the local water depth, and g is the acceleration due to
gravity. As shown by Battjes [17], the wave number K and the separation factor k are related
by

K 2 = k 2 + �∗= k 2(1 + �) (5)
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where the di�raction term �∗=(∇2a)=a is amplitude curvature. Inclusion of �∗ allows the
ray-type approach to include the e�ects of di�raction, such as in caustic zones [18]. Herein,
the numerical model is not applied to cases involving strong di�raction which would be better
modelled by a mild-slope or Boussinesq solver, so �∗ ≈ 0.
By substituting the dispersion relation (4) and the Doppler relation (3) into the wave con-

servation equation (1) and utilizing the Battjes relation (5), Yoo [16] (in detail) and also Yoo
and O’Connor [18] derived depth- and period-averaged equations describing conservation of
mass, momentum, wave energy density and kinematic wave number. Herein, the resulting
governing equations that describe conservation of mass and momentum will referred to as
modi�ed shallow water equations (SWEs), and those that describe conservation of wave en-
ergy density and kinematic wave number will be denoted as wave conservation equations
(WCEs) — see also Section 2.3. Thus, we write the equations expressing wave–current in-
teraction in integral form as

@
@t

∫
�
q d� +

∫
�

(
@f
@x
+
@g
@y

)
d�=

∫
�
h d� (6)

where for the modi�ed SWEs, the vectors q; f ; g and h are given by
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(7)

while the vectors for the WCEs are written as

q=



E

Kx

Ky


 ; f = fW + fWCI =



ECgx

�0

0


+




uE

uKx + vKy

0


 =




ECgx + uE

�0 + uKx + vKy

0




g=gW + gWCI =



ECgy

0

�0


+




vE

0

uKx + vKy


 =




ECgy + vE

0

�0 + uKx + vKy
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Figure 1. De�nition sketch for numerical scheme.
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(8)

where superscripts W and WCI refer to wave and wave–current interaction �uxes. In these
conservation equations (see one-dimensional de�nition sketch in Figure 1), � is the period-
averaged surface elevation (set-up and set-down) above the still water level hs; h (= �+ hs)
is the total water depth, u and v are period- and depth-averaged velocity components in the
x- and y-directions respectively, � is water density, �wx, �wy and �bx, �by are surface and
bed friction stresses, E=�ga2=2 is the wave energy per wave per unit crest length, a is the
wave amplitude, Kx and Ky are the wave number components in the x- and y-directions,
respectively, Cgx and Cgy are the group celerity components of the total group celerity Cg, k
is the separation factor, Ca is a bottom friction coe�cient associated with the wave amplitude,
Sh is a depth-associated frequency response factor, �x and �y are the kinematic eddy viscosity
coe�cients, and Sxx, Sxy, Syx, Syy are radiation stress tensors representing the excess momentum
�ux due to waves [19]. In tensor notation, the group celerities are given by

Cgi=
Ki
k
Cg=

1
2
(1 +G)

�0
k
Ki
k
=
1
2
(1 + �)(1 +G)

�0
K
Ki
K

(9)

where

Cg=(1 +G)�0=(2k)= kGK and G=
2kh

sinh 2kh
(10)

The depth-associated frequency response factor Sh is given by

Sh=
@�0
@h
=

k�0
sinh 2kh

=
G�0
2h

(11)
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The radiation stress tensor is given by [18,19]

Sij=
1
2

[
(1 +G)

Ki
k
Kj
k
+G�ij

]
E (12)

where �ij is the Kronecker delta.
The third-order terms in Equation (8) are a direct result of including the Battjes relation to

account for the lateral transfer of wave energy along the wave crest during instances where
�∗ is non-zero, (see Reference [16] for a derivation of these terms).
The friction coe�cient Ca, wave breaking criterion and kinematic eddy viscosity are esti-

mated empirically using Bijker’s [20], US-CERC [21] and Thornton’s [22] formulae, respec-
tively. More sophisticated closure submodels could be utilized (see Reference [23]) but are
not implemented here, as the purpose of this paper is to evaluate the use of dynamically
adaptive grids with a Godunov-type numerical scheme for coastal hydrodynamics. The eddy
viscosities, �x and �y are assumed isotropic and controlled by an empirical factor MT:

�x= �y=MTAbũmax (13)

where, at the bed, Ab = a= sinh(kh)= ũmaxT=2� is the excursion length of the orbital motion,
ũmax =2�a=T sinh(kh) is the maximum wave particle velocity and T is the wave period.

2.3. Numerical discretization

Comparison of the depth- and period-averaged mass and momentum equations (7) with the
shallow water equations (SWEs) of Rogers et al. [10] reveals that the only mathematical
di�erence between the two formulations is the additional radiation stress gradients. Thus,
Equations (7) for the period- and depth-averaged conservation of mass and momentum can
be classi�ed as modi�ed SWEs. The solver developed herein for the wave-induced currents,
is essentially the same as that of [10], but with the radiation stress gradient terms treated as
source terms for convenience.
Solution of the fully coupled wave–current interaction problem is achieved by solving the

WCEs and modi�ed SWEs simultaneously. The governing equations are discretized spatially
using �nite volumes on collocated Cartesian quadtree grids, with Roe’s approximate Riemann
solver [24] used for the non-linear convective �uxes in a second-order Godunov-type scheme.
Time-integration is performed using the second-order Adams–Bashforth technique with a non-
linear limiter applied to suppress the generation of unphysical oscillations. Linear refraction,
based on Snell’s Law see Reference [15], gives initial estimates of the separation factor and
wave number components Kx and Ky in each cell.
Using generalized �ux gradient and source term balancing [25] Equation (6) may be

written as

@
@t

∫
�
q d� +

∮
S
(f̂ − f̂ eq) dS=

∫
�
h∗ d� (14)

where f̂ is the vector of �ux functions through S given by f̂ = fnx + gny in which nx and
ny are the Cartesian components of n, the unit normal vector to S, eq refers to equilibrium
or still-water values, and h∗= h − heq. The equations are discretized on a collocated grid
with E; Kx; Ky; �; uh and vh stored at the centre of each cell. For each cell, Equation (14)
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can be more conveniently rewritten as

@Vq
@t

∣∣∣∣
i
=−

∮
@Ci
(f̂ i − f̂ eqi ) dS + (hi − heqi )Vi= −

∮
@Ci
f̂ ′i dS + Vih

∗
i (15)

where qi and hi are the cell centre values, and Vi denotes the area of cell i, @Ci is the path
of integration, which is along all four cell edges where the �ux out of each face is assumed
constant. The surface integral in Equation (15) can be evaluated in discrete form by using∮

@Ci
f̂ ′i ds=(f̂

′
E − f̂ ′W + f̂ ′N − f̂ ′S)�s (16)

where f̂ ′E; f̂
′
W; f̂

′
N and f̂

′
S are the vector �uxes through the east, west, south and north faces

of each cell, and �s is the length of the side of the cell. At each cell edge, the convective
�uxes are evaluated using Roe’s approximate Riemann solver [24]:

fi; j=
1
2
[f(q+i; j) + f(q

−
i; j)− |A|(q+i; j − q−

i; j)] (17)

in which

|A|=R|�|L (18)

where q+i; j and q
−
i; j are the reconstructed right and left Riemann states, respectively, at the cell

interface located between adjacent cells i and j, A is the �ux Jacobian evaluated using R and
L the right and left eigenvector matrices of A, respectively, and |�| is a diagonal matrix of
the absolute values of the eigenvalues of A. The �ux Jacobian matrix is given by

A=
@fW

@q

=



Cgxnx+Cgyny (Kx @G

K

@Kx
+GK)Enx+Ky @G

K

@Kx
Eny Kx @G
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(19)

with

GK =Cg=k and
@GK

@Ki
=
@GK

@k
@k
@Ki

=

(
�0
k3

[
kh

tanh kh
− 2kh
tanh 2kh

− 3
2

]
+
C 2
g

�0k

)
@k
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The matrix A has eigenvalues given by

	1 =Cgxnx + Cgyny; 	2 =Cgxnx + Sh
@�
@Kx

nx; 	3 =Cgyny + Sh
@�
@Ky

ny (20)

These real and distinct eigenvalues denote the characteristic velocities of propagation of the
energy �ux and the wave number, and con�rm that the scheme for the wave �uxes is strictly
hyperbolic. The eigenvalues 	2 and 	3 show that the propagation velocity is modi�ed by the
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depth-associated frequency response factor Sh as the wave number components advance over
varying depth water. The associated right and left eigenvector matrices are

R=




1 A12 A13

0 Sh
@�
@Kx

nx 0

0 0 Sh
@�
@Ky

ny




and L=




1 −A12
(
Sh
@�
@Kx

nx

)−1
−A13

(
Sh
@�
@Ky

ny

)−1

0
(
Sh
@�
@Kx

nx

)−1
0

0 0
(
Sh
@�
@Ky

ny

)−1




(21)

where A12 and A13 are elements of the �ux Jacobian given in Equation (19).
Thus, in summary, at the beginning of each time step the conserved variables, q, are stored

at the cell centres in a collocated (i.e. non-staggered) form, these are interpolated to the
cell face (or Riemann state) values in a physical manner using the slope limiter (see next
subsection and Equations (22) to (24) which are then used to calculate the intercell �uxes of
Equation (17)).
Slope limiter. The variables E; Kx and Ky in Equations (19)–(21) are given by Roe’s

average state, which is de�ned as

E=
√
E+E−; Kx=

K+x
√
E+ + K−

x

√
E−

√
E+ +

√
E− and Ky=

K+y
√
E+ + K−

y

√
E−

√
E+ +

√
E− (22)

where the superscripts + and − denote the right and left Riemann states either side of a cell
interface respectively. A MUSCL-type slope limiter is also used for piecewise-linear variable
reconstruction within the cell to estimate the values of the Riemann states and render the
scheme second-order accurate in space see Reference [26]. At each time step, the reconstruc-
tion step is carried out independently for each spatial direction. This limiter is implemented
such that for consecutive cells i − 1; i; i + 1 in a co-ordinate direction on a locally uniform
grid (using interpolation if necessary):

q
i± 1
2
= qi ± 1

2 (qi − qi−1)�(r) (23)

where �(r) is de�ned by

�(r)= max[0;min(
r; 1);min(r; 
)] (24)

with 16
62 and r=(qi+1−qi)=(qi−qi−1). Additionally, the entropy �x of Harten and Hyman
[27] is used to avoid the numerical solution violating entropy considerations. Equation (15)
is then integrated in time using a second-order Adams–Bashforth scheme.
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Wave–current interaction �uxes and source terms. Roe’s approximate Riemann solver is
used to evaluate the wave �uxes, fW, given by Equation (8), because it is extremely di�cult
to derive a �ux Jacobian with an associated eigensystem that incorporates currents as well as
waves. The wave–current interaction �uxes, fWCI, can be evaluated at the centre of each cell
face by using values that ensure the inherent conservation form of the �nite volume scheme.
This is most readily achieved using Roe-type averages, already de�ned at the required locations
by equations such as (22).
The source vector h contains spatial gradients that cannot be expressed easily in �ux gra-

dient form. In all cases, these have been calculated using central di�erence approximations
interpolated to a uniform surrounding grid if necessary (see Section 3). For the non-di�ractive
results presented herein the gradients of the di�raction term �∗ are all set to zero.
Boundary conditions. The in�ow and out�ow boundary conditions for currents are as given

by Reference [10]. For the period-averaged wave equations, non-re�ective transmissive bound-
ary conditions are applied at o�shore, onshore and lateral boundaries to allow transient waves
to leave the domain:

�B =�I; (25)

where �=Kx; Ky; E. Subscript B denotes the boundary value, and subscript I denotes the inner
Riemann state value at the boundary. The value of �B is only pre-speci�ed at the o�shore
boundary according to the prescribed conditions. To account for the moving shoreline, the
wetting and drying scheme of Reference [28] is used.

3. QUADTREE GRID GENERATION AND ADAPTATION

The quadtree grid generator and data handling techniques are described in detail by Reference
[10]. In short, the method involves domain decomposition into square or rectangular tiles
according to prescribed geometric=�ow criteria. Cell numbering and neighbour �nding by
means of the nearest neighbour concept rely on the quadtree structure see e.g. Reference [29].
The physical variables are stored in a collocated arrangement on the grid.
Grid adaptation is undertaken at �xed intervals during the �ow simulation, the interval

being a multiple of the time step used in integrating the governing equations. Adaptation
is carried out according to prescribed hydrodynamic criteria, which are compared against
the values of given hydrodynamic parameters evaluated numerically at each cell in the grid.
Where gradients of the hydrodynamic dependent variables are used as adaptation parameters,
these are calculated using central di�erences interpolated to a surrounding uniform grid of
equivalent resolution if necessary.
Grid enrichment is achieved by cell subdivision, if the hydrodynamic parameter calculated

for the cell exceeds the maximum prescribed value. Grid coarsening involves cell removal as
follows. If all four cells with the same parent cell have values of the hydrodynamic parameter
that are less than the prescribed minimum value, then all four cells are removed. Once mesh
re�nement is complete, grid regularization is enforced ensuring that the maximum linear ratio
between any adjacent cells remains 2:1. It should be noted that the resolution levels used
throughout adaptive simulations are user-de�ned maximum and minimum subdivision levels.
Addition and removal of cells then creates the problem of assigning values to cell variables
to allow the �ow simulation to continue such that it does not violate mass and momentum
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conservation. We use the prolongation routines and restriction routines of Reference [30]
whereby new cell data are linearly interpolated from surrounding cells.
Within the numerical scheme, the wetting and drying scheme is used simultaneously with

grid adaptation at the shoreline. In order to ensure that these two processes do not interfere,
at the end of each time step wetting is performed �rst in the x-direction, and then in the
y-direction (and then similarly for drying). Only when wetting and drying of the shoreline is
complete does adaptation take place.

4. SIMULATION OF NEARSHORE CIRCULATION AT
A HALF-SINUSOIDAL BEACH

4.1. Nearshore circulation at a sinusoidal beach

Most real beaches have non-planar bathymetries and consequently, there exist alongshore
variations of the wave �eld. Currents are generated by the non-uniformity of wave heights
due to topographical or wind forcing variations; these currents appear as patterns of longshore
currents, rip currents and circulation cells. In addition to the variation of the mean water level
(MWL), these nearshore currents help balance the driving forces.
Experimental data on near shore circulation at a laboratory-scale sinusoidal beach obtained

by da Silva Lima [31] are used to verify the numerical scheme and thence to assess grid
adaptation criteria. The half-sinusoidal plywood beach had a still water depth pro�le hs(x; y)
given by

hs(x; y)=



xs −0:7 m6x60[
x − 0:75 sin

( �x
4:36

)
sin
(
2�y
	

)]
s 06x64:36 m

(26)

where x is the distance o�shore from the still water line (SWL), y is the distance alongshore
ranging from 1.5 to 4:5 m, s=0:05 is the slope of the plane beach, and 	=6 m, which is
referred to as the rip current spacing. Figure 2 shows a plan view of the half-sinusoidal beach
in the wave basin.
In the numerical model, a time step of �t=0:005 s is used, and the dimensionless eddy

viscosity coe�cient MT is set to a value of 1.0 throughout the simulation. For bottom friction,
the roughness height is set to 0:001m. The minimum water depth is limited to Dmin =0:001m to
avoid unrealistically high wave numbers at the shoreline. The incident wave height is ramped
up over a period of 20 s. The o�shore wave conditions are: wave height Ho = 0:0618m, wave
period T =0:76 s, and incident wave angle �o = 0◦.

4.2. Grid convergence

First, grid convergence of the solution is undertaken on uniform quadtree grids of levels
5, 6 and 7. Figure 3 shows the 32× 16 uniform quadtree grid where �x=�y=0:1875 m
requiring 5 subdivisions of the unit square (referred to as a level-5 grid herein). For the
level-6 and level-7 grids, the �nest linear cell dimensions are �x=�y=0:09375 m and
�x=�y=0:046875 m, respectively. Grid convergence is assessed using Roache’s [32] grid
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Figure 3. Level-5 uniform quadtree grid (�x=�y=0:1875 m).
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convergence index (GCI). Using the L2 norm of the velocity (see Reference [4]), the GCI
is 22% from the level-5 to the level-6 grids, and the GCI is 2% from the level-6 to the
level-7 grids. Thus, second-order asymptotic convergence is achieved on the level-7 grid of
8192 cells. Accordingly, treating the converged level-7 result as the true solution, the level-5
depth-averaged velocities have a root mean square error (r.m.s. error) of 4.1% while the level-6
solution has an r.m.s. error of 1.9%. Figure 4 shows da Silva Lima’s [31] experimental velocity
vectors, and plots of the predicted depth-averaged velocities and stream-function contours
obtained using the level-7 grid (the velocities in Figure 4(b) are �ltered to an equivalent
coarse level-5 grid for ease of visualization). The depth-averaged streamlines delineate a
clockwise-rotating primary circulation cell with two counter-clockwise secondary circulation
cells, one further up the beach and the other towards the o�shore wave-driving boundary. The
position of the centre of the computed large primary gyre is displaced alongshore relative to
the basin centreline, and is 1:74 m from the SWL in close agreement with the experimental
result of da Silva Lima where the gyre is approximately 1:7 m from the SWL. Our second-
order �nite-volume scheme predicts more accurately the location of the centre of the gyre
than Borthwick and Park’s [11] �rst-order �nite di�erence scheme.
Predicted wave heights along the cross-shore basin-centreline displayed in Figure 5 are in

close agreement with the results of Reference [11] and the experimental data of da Silva
Lima. Despite the absence of non-linear shoaling and non-linear decay of the broken wave
heights in the numerical scheme, the results indicate that the wave-breaking criterion is well
suited to this application.
Figure 6 shows contour plots of wave crests when a crest is at the o�shore wave-driving

boundary. The wave phase is predominantly a�ected by the bottom topography, and little
a�ected by the recirculating currents. Only after the waves have broken inside the surf zone
where the physical meaning of the wave number is unclear, are there rapid changes in wave
phase. The o�shore-�owing current has a slight in�uence on the phase of the incoming waves
because the wave model is based on linear potential theory with a linear dispersion relation.

4.3. Grid adaptation criteria

With a converged solution available, the performance of the following �ve adaptation criteria
is investigated:

• Criterion I: non-dimensionalized depth-averaged vorticity;
• Criterion II: non-dimensionalized r.m.s. velocity gradient magnitude;
• Criterion III: wave steepness;
• Criterion IV: magnitude of wave height gradient; and
• Criterion V: wave height gradient non-dimensionalized with respect to cell size.

The level-5 32× 16 grid of Figure 3 is used as the base grid for adaptation. A user-de�ned
maximum cell size is restricted to level 5, and the minimum cell size is restricted to that of
grid convergence, level 7. Dynamic grid adaptation takes place every time step.
Criterion I: The grid is adapted according to the value of the absolute depth-averaged

vorticity non-dimensionalized with respect to the wave period T :

�0 =T
∣∣∣∣ @u@y − @v

@x

∣∣∣∣ (27)
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Figure 4. Comparison of converged level-7 (�x=�y=0:046875 m) prediction with ex-
perimental data for �ow over a half-sinusoidal beach [31]: (a) Experimental velocity vec-
tors [31]; (b) �ltered depth-averaged velocities (equivalent to �x=�y=0:1875 m); and

(c) depth-averaged stream-function contours.

Mesh enrichment takes place if �0¿0:0606, and mesh depletion if �0¡0:0578. Figure 7
shows the steady-state adapted quadtree grid, depth-averaged velocity vectors and stream func-
tion contours. The major �ow features of interest are reproduced properly with an r.m.s. error
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Figure 5. Experimental and predicted wave heights along centreline of basin.

Figure 6. Wave phase contours (also crest lines).

in the velocities of 0.65% when compared with the accurate solution of the uniform level-7
case. The nature of the weaker o�shore circulation cell has changed due to the lack of grid
resolution in this area, but this gyre is far weaker than the nearshore primary and secondary
ones. The adapted grid has 3359 cells, with high cell density in the vicinity of the two
main �ow circulation zones. As also found by Reference [10] for jet-forced �ow in a circu-
lar reservoir, an adaptivity criterion based on depth-averaged vorticity gives accurate results
e�ciently.
Criterion II: The grid is adapted according to the non-dimensionalized r.m.s spatial velocity

gradient magnitude:

Vs =T

√(
@u
@x

)2
+
(
@u
@y

)2
+
(
@v
@x

)2
+
(
@v
@y

)2
(28)
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Figure 7. Adaptation based on depth-averaged vorticity: velocity r.m.s. error: 0.65%: (a) Adapted
quadtree grid; (b) depth-averaged velocity vectors; and (c) depth-averaged stream-function contours.

Mesh enrichment or depletion is implemented for Vs¿0:0606 or Vs¡0:0578, respectively.
Figure 8(a) illustrates the adapted grid of 3647 cells, which has high cell density in the
circulation zones. The �ow patterns in Figures 8(a) and 8(b) are accurately modelled, with
the velocity r.m.s. error being 0.60%. The main advantage of Criterion II over Criterion I
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Figure 8. Adaptation based on velocity gradients: velocity r.m.s. error: 0.60%: (a) Adapted quadtree
grid; (b) depth-averaged velocity vectors; and (c) depth-averaged stream-function contours.

is that all sharp gradients in the currents are captured in Equation (28), not just the gra-
dients associated with areas of high vorticity. This is evident by comparing Figures 7(a)
and 8(a).
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Criterion III: The relative wave steepness parameter is de�ned as

Rw =
KH
KoHo

(29)

where the subscript o refers to o�shore values. In this case, mesh enrichment occurs if
Rw¿1:184 and mesh depletion if Rw¡1:125. With the adapted grid of 2687 cells, the depth-
averaged velocity �eld and stream-function contours in Figure 9 con�rm that the �ow features
are again sensibly predicted. The relative wave steepness parameter creates additional cells
either side of the breaker line. There are fewer cells at the shoreline, and the lower reso-
lution leads to slightly larger predicted velocities and a velocity r.m.s. error of 0.89%. The
wave steepness criterion is a viable option for grid adaptation, but problems arise in shoreline
resolution.
Criterion IV: The magnitude of the wave-height gradient parameter is de�ned as

@H
@x

∣∣∣∣
i
=

√(
@H
@x

)2
+
(
@H
@y

)2
(30)

for cell i. Mesh enrichment is implemented when @H=@x|i¿0:03 and depletion if @H=@x|i
¡0:0285. Figure 10(a) shows the adapted grid of 2318 cells. Criterion IV produces additional
cells almost solely in the surf zone immediately after wave breaking. Cells are also produced
in the area immediately adjacent to the shoreline as the wave height rapidly decreases to zero.
Figures 10(b) and 10(c) show the associated depth-averaged velocity �eld and stream function
contours respectively. Criterion IV reproduces the main �ow features with fewer cells than
Criteria I and II, and so is appropriate for generating a locally �ne mesh in the surf zone. In
this case, the r.m.s. error in velocities is 0.86%.
Criterion V: In order to remove the e�ect of the grid size on the discretization of gradients,

the grid is adapted using an adjusted version of Criterion IV, expressed as

	=

√(
@H
@x

)2
+
(
@H
@y

)2�l
Ho

(31)

where �l is the length of the cell perimeter. Mesh enrichment is enabled if 	¿0:09, and
mesh coarsening occurs if 	¡0:086. Criterion V leads to unstable results, with many spurious
circulation cells generated near the shoreline. This lends support to the idea that adaptation
criteria should be based solely on either numerical or physical grounds and not on a combi-
nation.

4.4. Combinations of grid adaptation criteria

The question now arises as to what happens if several adaptation criteria that individually
produce locally re�ned grids in speci�c areas are activated simultaneously. From the foregoing,
it appears that Criteria I, II, III and IV are viable control options for grid adaptation.
Combined implementation of Criteria II, III and IV causes the solution to degenerate into

many spurious circulation zones. Figure 11 presents the predicted wave-induced current �eld
at t=50 s obtained by jointly applying Criteria II and III. The main nearshore �ow features
are obtained, but the scheme is unstable due to numerical interference between the di�erent
adaptation criteria. Cells that are added after a particular time step due to one criterion may
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Figure 9. Adaptation based on relative wave steepness: velocity r.m.s. error: 0.89%: (a) Adapted quadtree
grid; (b) depth-averaged velocity vectors; and (c) depth-averaged stream-function contours.

be removed by another criterion the next time step causing a feedback mechanism leading
to an unstable simulation. Delaying the start of grid adaptation until time t=30 s, and thus
allowing the solution to evolve partly, a stable but unsteady scheme is achieved, where the
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Figure 10. Adaptation based on wave height gradient: velocity r.m.s. error: 0.86%: (a) Adapted quadtree
grid; (b) depth-averaged velocity vectors; and (c) depth-averaged stream-function contours.

number of cells in the adapted grid continually �uctuates. Performing the same simulation
but allowing the grid to adapt every 100 time steps does not eradicate the non-convergence
of the solution with unphysical circulation cells generated in the shallowest waters.
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Figure 11. Adaptation based on velocity gradients and wave height gradient: depth-averaged
velocity vectors (unstable).

If grid adaptation is restricted solely to mesh enrichment, the instability caused by the
interference of cell addition and removal according to the separate criteria obviously could
not occur. With this in mind, mesh depletion was allowed to occur only when Criteria II
and III were satis�ed. Figure 12 shows the steady-state adapted quadtree grid, depth-averaged
velocities and stream function contours. The simulation is stable, and the grid contains all
the extra cells associated with each criterion resulting in an r.m.s. error of 0.53%. This result
implies that it is possible to combine criteria only when they all satis�ed simultaneously, but
at the cost of more cells than were necessary to achieve a reasonably accurate solution.

4.5. E�ciency of grid adaptation

The results in Section 4.3 indicate that it is possible to achieve a large reduction in the
number of cells while still producing results of almost the same accuracy as obtained on a
uniform level 7 grid. This prompts the following questions. Could the same steady-state result
be obtained by adapting the grid only every 100, 200, etc. time steps? What are the potential
savings in cpu-time? To this end, adaptation is implemented every 1, 2, 4, 8, 16, 64, 128,
256, 512, 1024 and 2048 time steps using Criterion II. The simulation is carried out on a
Pentium II 600MHz single-processor computer with 256MB RAM. In each case, the solution
is run to steady state.
Table I lists the cpu-time for each simulation normalized with respect to the uniformly-

dense level-7 solution. It is immediately evident that there is a large saving in cpu-time with
a speed-up factor of at least 3, even when using adaptation every time step. There is then a
gradual further reduction in cpu-time as larger periods between adaptation are taken. It is only
when adaptation is permitted only every 1024 and 2048 time steps that signi�cant reductions
in cpu-time are achieved above dynamic adaptation every time step. However, when adaptation
is implemented at intervals larger than every 512 time steps, the solution begins to change
non-physically, and the investigation is carried no further.
When dynamic adaptation is implemented in the scheme there are slight savings in cpu-

time, which indicate that the time taken for adaptation during each iteration step is very
small. This is not surprising, given that the grid is not completely regenerated whenever
adaptation is invoked. Once the grid reaches near steady state, the grid search to �nd cells
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Figure 12. Adaptation based on velocity gradients and wave steepness (both criteria satis�ed for mesh
depletion): velocity r.m.s. error 0.53%: (a) Adapted quadtree grid; (b) depth-averaged velocity vectors;

and (c) depth-averaged stream-function contours.

for removal or addition is very rapid (approximately 2% of the computation time over one
time-step). This demonstrates a major advantage of using hierarchical quadtree grids for mesh
adaptation.
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Table I. Cpu-times for adaptation implemented at di�erent time intervals in comparison with the time
for the fully dense grid solution.

Number of time steps between Cpu-time normalized with respect to that of
each adaptation of the grid Cpu-time (s) the fully dense uniform level-7 grid

1 3122 0.316
2 3055 0.310
4 3023 0.306
8 3014 0.305
16 3004 0.304
64 2995 0.303
128 2980 0.301
256 2950 0.299
512 2896 0.292
1024 2718 0.275†

2048 2402 0.243†

Solution on fully dense uniform
level-7 grid 9870 1

†Denotes that solution has changed physically and has not reached steady state by the time the other simu-
lations have �nished.
Machine speci�cation: 600MHz single processor with 256MB RAM.

The saving in cpu-time, when adaptation occurs every 256 and 512 time steps, arises from
the fact that much of the intensive computation during that time is carried out on a coarser
grid. This observation is con�rmed by Plate 1, which illustrates the growth in cells with time.
In this case, the optimum choice for implementing adaptation lies approximately in the range

of every 256–512 time steps. This is not a general result because the optimum choice depends
on case-speci�c parameters (such as o�shore wave-period and the maximum allowable time
step), and is probably related to the natural time scales of the large scale features of the �ow
�eld. Nevertheless, there are minor gains in cpu-time to be achieved by not adapting every
time step.

5. WAVE-INDUCED CURRENTS AT A TRI-CUSPATE BEACH IN THE UKCRF

Having identi�ed appropriate grid adaptation criteria for nearshore circulation at a half-
sinusoidal beach, the numerical model was applied to wave-induced currents at a �xed tri-
cuspate beach in the U.K. Coastal Research Facility (UKCRF) for which measurements have
been obtained by Borthwick and Foote [33]. The UKCRF wave basin has a working area of
20 m longshore by 15 m cross-shore. Waves are produced using a 72-paddle wavemaker, and
periodic lateral boundary conditions are provided by a 4-pump longshore current recirculation
system. Three sinusoidal cusps were constructed on the upper section of a 1:20 plane beach
whose toe was located 8 m from the wavemaker. The still water depth was 0:5 m at the
wavemaker. In the cuspate region, the bed topography was given by

hs(x; y)= s
[
(xL − x)− A sin

(
�(xL − x)
xL

)(
1 + sin

(
�− 2�y

R

))]
(32)
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Figure 13. Tricuspate beach: (a) Location of cusped beach in the UKCRF; and (b) bed topography
used in the numerical simulation.

where s=0:05 is the bed slope, x is the distance onshore from the toe of the cusps, xL=5m
is the length of one cusp cross-shore, y is the distance alongshore from the start of the cusps,
A=0:75 is an amplitude related to cusp height, R=4m is the longshore wavelength of a cusp,
and �=3�=2 is a phase angle. Figure 13(a) presents a distorted scale 3-D view of the bed
topography of the tri-cuspate beach in the UKCRF. Figure 13(b) illustrates the corresponding
still water depth contours that delineate the beach used in the numerical model.
Borthwick and Foote [33] obtained estimates of the horizontal components of the wave-

induced currents by tracking the movements of neutrally buoyant markers using digital image
analysis. Acoustic Doppler velocimetry was used to determine the detailed 3-D velocity com-
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Figure 14. Adapted quadtree grid for case B.

ponent pro�les through the depth at selected points in the nearshore zone. Of the four wave
conditions investigated by Reference [33], two are used here for model veri�cation; namely:
Case B (regular normally incident waves): Ho = 0:125 m, T =1:2 s, �o = 0◦;
Case C (regular obliquely incident waves): Ho = 0:125 m, T =1:2 s, �o = 20◦,

where Ho and �o are the o�shore wave height and direction of the incident waves, respectively,
and T is the wave period.
For both cases considered, the numerical model was �rst implemented on �xed uniform

quadtree grids. Grid convergence was achieved using a level-8 grid of 128× 256 cells where
�x=�y=0:046875 m. In all simulations, �t=0:01 s, and the o�shore wave height was
ramped up to its steady-state value over 20 s. MT =1:0; Rh=0:001 m inside the cuspate
region, and Rh=0:02 m elsewhere. Periodic conditions were imposed at the lateral bound-
aries. Grid adaptation was invoked on a uniform level-6 base grid of 32× 64 cells where
�x=�y=0:1875m. Using Criterion II, mesh enrichment occurred if Vs¿0:06, and mesh de-
pletion if Vs¡0:048. The mesh was adapted every 10 time steps, with minimum and maximum
subdivision levels set to 6 and 8, respectively.
Figure 14 illustrates the converged adapted grid of 6386 cells corresponding to the steady

state solution for the normally incident waves of case B. The corresponding level-8 uniform
grid contains 32768 cells, of which most are e�ectively redundant, thus demonstrating the
advantage of using dynamic grid adaptation to allocate computational resources in areas of
high �ow gradient. Figures 15(a), 15(c) show the predicted steady-state wave-induced current
vectors and stream function contours. The �ltered current patterns in Figure 15(c) are in
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Figure 15. Numerical predictions and experimental measurements: Case B: (a) Numerical depth-averaged
velocities; (b) numerical depth-averaged stream function contours; (c) �ltered numerical depth-averaged

velocities; and (d) experimental velocities.
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reasonable agreement with the experimental data from Reference [33] in Figure 15(d), with
primary circulation zones evident in the vicinity of the breaker zone. Narrow seaward-�owing
rip currents are visible, and coincide with the narrowing of the streamlines in Figure 15(b). The
magnitude of the predicted rip currents is lower than that obtained experimentally, presumably
due to period-averaging and linearization of the governing equations smoothing out the jet-
like motion of the measured rip currents [33, 34]. It should be noted that the measured data
include inertia e�ects of the markers, as well as interpolation errors from projecting the current
velocities onto a uniform grid. Also evident in the numerical results are secondary circulation
patterns in the swash zone. In both cases B and C, these secondary gyres could not be
quanti�ed experimentally because the markers began to hit the bed in the shallowest water.
However, the presence of secondary circulation cells was qualitatively con�rmed by observing
the movement of dye close to the shore.
Results for case C, where waves approach the beach obliquely, are shown in Figure 16.

Here, a longshore current is generated at the plane beach, which then becomes a meandering
longshore current following the bed contours in the tri-cuspate region. In general, there is close
agreement between the numerical experimental current patterns and strengths, even at the limit
of the experimental measurements in the shallowest water where secondary recirculation zones
are discernible. The computed stream-function plot in Figure 16(b) shows that the secondary
recirculation zones near the shoreline are weak.
Within the conceptual framework of the coupled ray-type wave conservation equations and

modi�ed SWEs, the nearshore currents can be readily explained in terms of the spatial gra-
dients of radiation stresses (or local dissipation of the excess momentum �ux due to waves)
[19]. As the waves break, @Sxx=@x reverses in sign and provides thrust to force the water up the
beach, especially over the cusp horns. In the case of normally incident waves, the sinusoidally
varying longshore gradients of Syy give rise to a variation in the longshore-directed radiation
stresses creating periodic longshore variations in the MWL and hence pressure gradients that
drive currents toward each embayment. In turn, o�shore-directed pressure gradients are gener-
ated sending rip currents beyond the surf zone. The major di�erence between the normally and
obliquely incident cases is due to Sxy (= Syx) and the associated spatial gradients. Unlike the
case when �o = 0◦, the combined thrust of @Syx=@x and @Syy=@y for obliquely incident waves
acts entirely in the negative y-direction and is the direct cause of the meandering longshore
current.

6. PARAMETER STUDY FOR MULTICUSPED BEACH

A parameter study has been undertaken to provide insight into wave-induced currents at
a cusped beach, while also assessing the performance of the numerical model. Hence, the
following changes were made to determine their e�ect on the solution:

(i) variation of the incident wave angle between �=0 and 60◦;
(ii) reduction in the height of one of the cusps;
(iii) variation of the o�shore wave height;
(iv) replacement of the tri-cuspate beach by an in�nitely repeating series of cusps;
(v) variation of the eddy viscosity parameter MT.

To aid interpretation, maximum rip and longshore current values are recorded in Table II.
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Figure 16. Numerical predictions and experimental measurements: Case C: (a) Numerical depth-averaged
velocities; (b) numerical depth-averaged stream function contours; (c) �ltered numerical depth-averaged

velocities; and (d) experimental velocities.
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Table II. Results for multicusp beach parameter tests.

Maximum Maximum
rip current longshore Number

Parameter change (m=s) current (m=s) of cells‡

Case B, �o = 0◦† −0.174 −0.217 6386
Case C, �o = 20◦† — −0.390 7625
Increase the incident wave angle to �o = 5◦ −0.161 −0.232 6353
Increase the incident wave angle to �o = 10◦ −0.134 −0.239 6272
Increase the incident wave angle to �o = 20◦ — −0.390 7625
Reduce height of o�centre cusp by 5% −0.155 −0.208 6308
Reduce height of o�centre cusp by 20% −0.155 −0.208 6206
Reduce height of o�centre cusp by 40% −0.154 −0.209 6092
Reduce height of o�centre cusp by 60% −0.152 −0.209 5807
In�nite series of cusps, wave angle �o = 0◦ −0.174 −0.178 12128
In�nite series of cusps, wave angle �o = 20◦ — −0.346 11960
Increase eddy viscosity parameter to MT = 1:10 −0.145 −0.201 6290
Decrease eddy viscosity parameter to MT = 0:80 −0.240 −0.253 6443
Decrease eddy viscosity parameter to MT = 0:25 −0.257 −0.242 6881
Decrease eddy viscosity parameter to MT = 0:25 with
in�nite series of cusps −0.305 −0.249 13997

†Denotes original parameter values: Ho = 0:125 m, Rh=0:02 m outside cusp region, Rh=0:001 m inside cusp
region, MT = 1:0.‡Reference grid number of cells for highest level uniform grid: 32768.

6.1. Variation of incident wave angle

Figure 17 presents the computed depth-averaged stream function contours at steady state for
�=0; 5; 10 and 20◦. As � increases, a meandering longshore current develops, but it is
not until � is about 10◦ that the longshore current is the dominant �ow feature instead of
the circulation zones. At �=5◦, the primary recirculation zones are strong (as displayed in
the stream function plots), and there is a very weak longshore current from right to left.
At �=10◦, the meandering longshore current is more evident, and the anticlockwise rotating
primary and associated clockwise secondary circulation cells have disappeared. By �=20◦,
transition to a full meandering longshore current is e�ectively complete. As the angle changes
from 5 to 10◦, the clockwise primary recirculation cells migrate leftwards as they are a�ected
by momentum transfer from the growing meandering nearshore current. Between 10 and 20◦

these cells become progressively weaker and merge to form a large-scale re-circulating region
o�shore of the cusps. At larger incident wave angles (�=30; 45 and 60◦), the meandering
longshore current patterns do not change signi�cantly and are not displayed.
These results demonstrate that the meandering longshore current arises from quite a small

deviation from normal incidence. This is not surprising since even a small angle of incidence
introduces gradients in the shear stress that can only be balanced by bottom friction, for which
there needs to be a velocity.

6.2. Reduction in height of a cusp
Figure 18 illustrates the depth-averaged stream function contours with normally incident waves
for cases where the cusp height has been reduced by 10, 20, 40 and 60%. The plots clearly
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Figure 17. Predicted stream function contours: variation of incident wave angle: (a) �=0◦;
(b) �=5◦; (c) �=10◦; and (d) �=20◦.
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Figure 18. Predicted stream function contours: o�-centre cusp height decrease: (a) 10% decrease;
(b) 20% decrease; (c) 40% decrease; and (d) 60% decrease.
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show that it is not until the cusp height is signi�cantly reduced by 40% (Figure 18(c)), that
the �ow �eld in its vicinity is altered. Until this point, the strong circulating �ows still occur
indicating that the �ow �eld is insensitive to relatively small changes in bed topography. When
the cusp height is reduced to 60% (Figure 18(d)), it is obvious that the �ow pattern at the
central cusp becomes almost identical to that at the outer cusp before its height was reduced,
as would be expected. At the reduced outer cusp, the originally strong gyres have virtually
disappeared, while the secondary circulation zone immediately adjacent to the shoreline, has
been replaced by a longshore feeder current. A reduction of the height of one cusp does not
a�ect the maximum rip and longshore current speeds induced by the other cusps, Table II.
The dependence of the circulation patterns on these topography changes also supports the idea
that bathymetry- and wave-induced currents encourage the self-sustaining bedforms observed
at cuspate shorelines [35].

6.3. Variation of the o�shore wave height

The e�ect of o�shore wave height on the nearshore current patterns is examined by setting Ho
to values of 0.01, 0.05, 0.10 and 0:15 m. Figure 19 shows the depth-averaged velocities and
streamlines for an o�shore waveheight of Ho = 0:01m. Although the velocities are very small,
the streamlines in Figure 19(b) illustrate that the strongest circulation zones are generated
near the breaker line with their centres approximately 1 m o�shore of the still water line.

Figure 19. Predictions for o�shore wave height Ho = 0:01 m: (a) Depth-averaged stream function
contours; and (b) �ltered depth-averaged velocities.
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Figure 20. Predictions for o�shore wave height Ho = 0:05 m: (a) Depth-averaged stream function
contours; and (b) �ltered depth-averaged velocities.

These correspond to the primary circulation cells observed for Case B where Ho = 0:125m in
Figure 15(b), but occur in shallow water near the shoreline without the well-de�ned secondary
circulation cells observed previously. Although there is an o�shore �ow at the cusp troughs
driven by the primary recirculation cells, the �ow path is relatively broad and weak, unlike
a rip-like jet. O�shore of the primary recirculation zones there are even weaker counter-
rotating cells of opposite sense of rotation. This means that at the toe of the cusp horn,
the �ow is o�shore directed when Ho = 0:01 m, unlike the situation when Ho = 0:125 m in
Case B. If the o�shore waveheight increases slightly to Ho = 0:05 m, the circulation patterns
alter. The primary circulation cells have streamlines closely spaced at embayments, linked
to o�shore-directed rip-like currents. It would appear that given an appropriate bathymetry, a
relatively small o�shore waveheight may be su�cient to trigger the formation of a rip current.
The stream function contours in Figure 20(a) reveal that the primary recirculation cells have
moved o�shore, allowing the formation of weaker secondary circulations in the shallowest
waters. However, comparison of the weak o�shore circulation zones with those produced by
Ho = 0:125m of Case B shows the �ow direction in this region is still opposite to that observed
at larger wave heights. Figure 21 illustrates the streamlines when the o�shore waveheight is
increased to Ho = 0:10m. There is a pronounced shift in the �ow pattern, which more closely
resembles that obtained for Case B in Figure 15(b). The primary circulation cells have moved
slightly further o�shore and the secondary circulation cells have widened cross-shore relative
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Figure 21. Predictions for o�shore wave height Ho = 0:10m. Depth-averaged stream function contours.

Figure 22. Predictions for o�shore wave height Ho = 0:15 m: (a) Ho = 0:05 m: Depth-averaged stream
function contours; and (b) �ltered velocities.

to the case of Ho = 0:05 m. The rip-like currents have narrowed and �ow further from the
beach before they fan out and die away outside the surf zone. If the o�shore waveheight is
increased further to Ho = 0:15 m, as shown in Figure 22, there is only a marginal change in
the wave-induced current patterns. This is due to the gradients of the radiation stresses inside
the surf zone being limited in magnitude by saturated wave breaking. Overall, it appears that
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there is a shift in circulation patterns as cuspate bedforms develop, closely linked to feedback
between the changing morphology and wave-induced currents.

6.4. In�nitely repeating series of beach cusps

Rhythmic shorelines often consist of multiple cusps, and so it is important to examine whether
the �ndings from three cusps can be extended to multiple cusps, using periodic lateral bound-
ary conditions. Here, the bed roughness remains Rh=0:001m in the cuspate region and 0:02m
elsewhere, in accordance with the UKCRF experiments. To compare with the tri-cuspate beach
data for Cases B and C, waves of o�shore wave height Ho = 0:125 m of zero angle of in-
cidence and 20◦ angle, respectively, are generated at the o�shore boundary. The predicted
depth-averaged streamline patterns in Figure 23(a) repeat exactly per cusp, and consist of
identical strong primary nearshore gyres, weaker secondary circulation zones immediately ad-
jacent to the shoreline and very weak circulation in the o�shore region. For the 20◦ case,
a steady meandering longshore current and weak secondary circulation zones adjacent to the
shoreline are obtained as illustrated in Figure 23(b). These computational patterns suggest that
the experimental �ow features observed around the central cusp of the tri-cuspate beach are
representative of those at a beach with repeating cusps.

Figure 23. Predicted stream function contours: variation of wave angle over repeating
cusps: (a) �=0◦; and (b) �=20◦.
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6.5. Variation of the dimensionless eddy viscosity parameter MT

In the numerical scheme, the eddy viscosity model of Reference [22], Equation (13), accounts
empirically for lateral mixing of horizontal momentum. O’Connor and Yoo [36] showed that
Thornton’s model performs satisfactorily when simulating a longshore current due to oblique
waves at a beach. However, Haller and Dalrymple [34] found that the turbulent mixing terms
have a signi�cant in�uence on the nature of predicted nearshore rip-like currents. Here, Thorn-
ton’s empirical parameter, MT, has been varied to assess the e�ect of changing eddy viscosity
levels on the nearshore currents due to waves at normal incidence. An increase in MT to 1.1
caused slight reductions in the maximum rip and longshore currents (see Table II).
When decreasing MT, the �rst noticeable e�ects on the �ow patterns occur at MT =0:5

approximately. The size and orientation of the primary circulation zones change; there is a
broader area of onshore �ow, and stronger rip currents cut diagonally across the surf zone.
Figure 24(a) depicts the depth-averaged stream function contours when MT has been further
decreased to 0.25. Detailed comparison with the results for Case B in Figure 15(b) where
MT =1:0 reveals that decreasing MT has exaggerated the very slight orientation of the original
central circulation zones. Thus, the rip currents that are meant to be the fastest part of the
�ow experience the maximum e�ect of changes in the eddy viscosity.
Given the spreading of the circulation zones over adjacent cusps at the tri-cuspate beach,

it is of interest to see if similar behaviour is exhibited over the in�nitely repeating series
of cusps described previously. Figure 24(b) illustrates the depth-averaged stream function
contours at the multi-cusped beach when MT =0:25. In contrast to the results for the tri-
cuspate beach in Figure 24(a), the recirculation zones are once more oriented normal to
the shore. Furthermore, the repeated primary circulation cells are elongated cross-shore; the
onshore �ow at the cusp horns covers a wider area, and the seaward currents are narrower and
stronger. Clearly, at a beach with successively repeating cuspate bedforms, there is a balance
of longshore momentum in the �ow �eld between adjacent cusp horns that does not exist at
a tri-cuspate beach. Moreover, if the nearshore �ow-induced turbulence falls below a certain
level, the �ow �eld in the centre of a tri-cuspate beach may not be representative of a beach
with repeating cuspate bedforms.

7. CONCLUSIONS

A �nite-volume numerical model has been presented for coastal wave–current interaction
at cuspate beaches, based on adaptive hierarchical grids. The governing depth- and period-
averaged (2-DH) equations are formulated as a set of hyperbolic conservation laws to permit
�ows to be modelled with Roe’s approximate Riemann solver to solve �ux terms. A matrix
hyperbolic formulation of the wave energy and kinematic wave number conservation laws
is derived, and its eigensystem determined. The eigenvalues are equal to the wave group
celerity (corresponding to the rate of transport of energy) and modi�ed wave group celerities
(corresponding to wave front components) as they propagate into shallower water.
Various quadtree grid adaptation criteria have been investigated for simulating nearshore

circulation at a half-sinusoidal beach. Signi�cant gains have been achieved in memory stor-
age and computational time by using grid adaptation. Of the various adaptation criteria ex-
amined, those based on non-dimensionalized depth-averaged vorticity, wave-height gradient,
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Figure 24. Predicted stream function contours: eddy viscosity parameter MT =0:25: (a) Tricuspate beach
(cuspate area enlarged); and (b) repeating cusps (entire numerical domain).

wave steepness and the magnitude of velocity gradients produced grids that were locally re-
�ned around the corresponding physical features with a sensible distribution of cells. The
wave steepness criterion provides mesh enrichment around the wave-breaking zone, whereas
the magnitude of velocity gradients criterion focuses on �ow regions with large spatial gradi-
ents in the wave-induced currents. An attempt to remove automatic dependence on cell size
using a criterion based on non-dimensionalized wave-height gradient produced unstable re-
sults. We conclude that physical criteria lead to more accurate and stable results than mixed
physical and grid criteria, where feedback tends to occur between the grid and the physical
�ow features.
The simultaneous combination of di�erent adaptation criteria produced spurious results due

to interference between cell addition and removal according to the separate criteria. However,
when all the criteria are satis�ed simultaneously, combining the criteria eliminates negative
feedback and the simulation remains stable. An investigation into the e�ciency gains attained
by implementing adaptation after di�erent numbers of time steps, showed that occasional
adaptation leads to a marginal decrease in cpu-time over adaptation each time step.
The numerical model has been further tested by simulating wave–current interaction at a

tri-cuspate beach, and the results are found to be in reasonable agreement with laboratory
data from the UKCRF from Borthwick and Foote [33]. Additional insight into the nearshore
processes at cusped beaches has been gained from a parameter study, which examined the
sensitivity of the horizontal wave-induced currents to the angle of wave incidence, relative
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cusp height, o�shore wave height, repeating cuspate bedforms and turbulent eddy viscosity.
The results indicate that the circulation zones are highly localized to within the smooth cuspate
region, and that a meandering longshore current can be initiated by a small deviation from
the normal by the incident wave angle.
The work described herein has concentrated on idealized 2-DH nearshore wave-induced

currents at �xed multi-cusped beaches. Of course, two-dimensional period-averaged ray-type
modelling is inherently limited. Wave re�ection is not modelled, due to the loss of phase
information. Vertical motions are neglected, and so the undertow is not predicted. Energy
dissipation mechanisms such as wave breaking and turbulence are treated empirically. Despite
these limitations, our relatively simple 2-DH model apparently reproduces much of the dom-
inant physics in such a complex coastal �ow. To predict coastal processes at sandy beaches,
an obvious extension of our work is to incorporate sediment dynamics and morphological
response.
Overall, this paper demonstrates some of the computational advantages of a Godunov �nite-

volume approach on an adaptive quadtree mesh. In such a framework, mesh adaptation based
on a single criterion is simple and e�ective in generating accurate representations of localized
complex physical features of coastal �ows.
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Plate 1. Number of cells with simulation time using adaptation criterion based
on velocity gradient magnitude.
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